ALISO VIEJO, Calif., June 18, 2015 /PRNewswire/ -- Microsemi Corporation (Nasdaq: MSCC), a leading provider of semiconductor solutions differentiated by power, security, reliability and performance, today announced it has completed differential power analysis (DPA) testing on its secure boot field programmable gate array (FPGA) solution, which resolves side channel vulnerabilities inherent in the configuration process of large static random-access memory (SRAM) FPGAs. The DPA testing was completed using the Test Vector Leakage Assessment (TVLA) methodology developed by Cryptography Research Incorporated (CRI), a division of Rambus. Results of the testing show Microsemi's secure boot solution has sufficient design margin to protect against side channel attacks. TVLA was developed to address the shortcomings of evaluation-based testing in this field. Rather than focusing on key extraction, which may depend heavily on the expertise of the evaluator, TVLA is based on a statistical approach to derive an objective pass/fail score on the underlying system's information leakage.
Microsemi's secure boot SRAM FPGA reference design is ideal for systems with requirements for high value intellectual property (IP) protection, including mitigations against side-channel attacks. Key applications include protection of high value commercial and critical infrastructure systems from cloning and reverse engineering. All commercially available SRAM FPGAs on the market today are susceptible to DPA and other related side-channel attacks, which can expose the bitstream decryption key and risk loss of valuable IP. Microsemi's secure boot FPGA solution uses the company's SmartFusion®2 system-on-chip (SoC) FPGA to securely load target SRAM FPGAs, with all cryptographic processing performed in a DPA-safe manner. All cryptographic processing IP in the solution includes pass-through licenses from CRI for both the SmartFusion2 host and target FPGA platforms.
"Microsemi's secure boot solution ensures confidentiality and authentication of an underlying system design by leveraging the high security of our SmartFusion2 SoC FPGAs as a root-of-trust," said Paul Quintana, director of vertical marketing for defense, security and computing at Microsemi. "Having a strong root-of-trust is often a critical element to protect and assure a design has not been modified."
This technology is ideal for the defense and security market, as defense-grade systems often have requirements for anti-tamper to protect against reverse engineering of the underlying technology. This is a crucial requirement, especially for systems purposed for foreign military sales (FMS). Microsemi is currently engaged with leading defense contractors to implement this technology.
According to Strategy Analytics, global spending on RF-based electronic warfare (EW) systems is forecast to grow to more than $9.3 billion through 2022. The Strategy Analytics Advanced Defense Systems (ADS) service forecast model, "Airborne EW (EA) Systems and Components Forecast 2012-2022," predicts a future shift towards reestablishing airborne EW capabilities that counter anti-access, area-denial systems will translate into spending on airborne EW systems—accounting for over 35 percent of this global spending.
Key features of the secure boot SRAM FPGA reference design include:
- SmartFusion2 security uniquely qualifies it as root-of-trust
- Mitigates DPA/SPA configuration vulnerabilities of large SRAM FPGAs where anti-tamper is required
- Minimal impact to existing system architecture
- Licensed physically unclonable function (PUF) technology from Instrincic-ID allows for unique binding to a target component
- Only requires a simple user eligibility certification to use DPA patents licensed by Microsemi from Cryptography Research
About Differential Power Analysis
DPA is an insidious and powerful technique hackers use to extract secrets such as cryptographic keys from an electronic device by externally monitoring the instantaneous power consumed by the device while it is operating. Microsemi's secure boot technology is a highly effective security measure that ensures a programmable device is executing an authentic code that has not been tampered with or altered.
About SmartFusion2
SmartFusion2 SoC FPGAs integrate inherently reliable flash-based FPGA fabric, a 166 megahertz (MHz) ARM Cortex-M3 processor, advanced security processing accelerators, DSP blocks, SRAM, eNVM and industry-required high performance communication interfaces, all on a single chip. Microsemi's SmartFusion2 SoC FPGAs are designed to address fundamental requirements for advanced security, high reliability and low power in critical communications, industrial, defense, aviation and medical applications.
Product Availability
The results of Microsemi's DPA testing were presented recently at the Anti-Tamper National Forum in Baltimore. Reference designs and user guides are available now, including an evaluation model, full customizable reference designs and design services. For more information, visit http://www.microsemi.com/products/fpga-soc/security/secure-boot-fpga or contact Microsemi at [email protected].
About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif, and has approximately 3,600 employees globally. Learn more at www.microsemi.com.
Microsemi and the Microsemi logo are registered trademarks or service marks of Microsemi Corporation and/or its affiliates. Third-party trademarks and service marks mentioned herein are the property of their respective owners.
"Safe Harbor" Statement under the Private Securities Litigation Reform Act of 1995: Any statements set forth in this news release that are not entirely historical and factual in nature, including without limitation statements related to its completing differential power analysis (DPA) testing on its secure boot field programmable gate array (FPGA) solution, which resolves vulnerabilities inherent in the configuration process of large static random-access memory (SRAM) FPGAs, and its potential effects on future business, are forward-looking statements. These forward-looking statements are based on our current expectations and are inherently subject to risks and uncertainties that could cause actual results to differ materially from those expressed in the forward-looking statements. The potential risks and uncertainties include, but are not limited to, such factors as rapidly changing technology and product obsolescence, potential cost increases, variations in customer order preferences, weakness or competitive pricing environment of the marketplace, uncertain demand for and acceptance of the company's products, adverse circumstances in any of our end markets, results of in-process or planned development or marketing and promotional campaigns, difficulties foreseeing future demand, potential non-realization of expected orders or non-realization of backlog, product returns, product liability, and other potential unexpected business and economic conditions or adverse changes in current or expected industry conditions, difficulties and costs of protecting patents and other proprietary rights, inventory obsolescence and difficulties regarding customer qualification of products. In addition to these factors and any other factors mentioned elsewhere in this news release, the reader should refer as well to the factors, uncertainties or risks identified in the company's most recent Form 10-K and all subsequent Form 10-Q reports filed by Microsemi with the SEC. Additional risk factors may be identified from time to time in Microsemi's future filings. The forward-looking statements included in this release speak only as of the date hereof, and Microsemi does not undertake any obligation to update these forward-looking statements to reflect subsequent events or circumstances.
Logo - http://photos.prnewswire.com/prnh/20110909/MM66070LOGO
SOURCE Microsemi Corporation
Related Links
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
Newsrooms &
Influencers
Digital Media
Outlets
Journalists
Opted In
Share this article