BOSTON, April 8, 2021 /PRNewswire/ -- Antimicrobial technologies such as coatings and textiles containing silver and copper are helping people during the COVID-19 pandemic by ensuring that whatever they touch, whether that is a door handle or their own mask, is free from live SARS-CoV-2 particles. But how exactly do these antimicrobial technologies work? How can a silver, copper or even polymeric coating kill microorganisms such as bacteria, fungi, or in the case of COVID-19, viruses? This article explores the mechanisms of action, or the interactions, through which antimicrobials work. IDTechEx have recently published a research report on the antimicrobial technology industry – "Antimicrobial Technology Market 2021– 2031". Please refer to www.IDTechEx.com/Antimicrobial for more information.
Damaging cell walls and membranes
Microorganisms such as bacteria, viruses, and mold are single cellular organisms surrounded by either a cell wall, cell membrane, or both. Disruption of this outside layer is a common way to kill microorganisms. Like all organisms, the insides of a microorganism are carefully regulated, and ideally, stays inside.
One way to destroy microorganisms is to disrupt the activity of the membrane. For example, silver-based technologies release silver ions that can bind to proteins within the membrane that regulate transport into and out of the cell. Similarly, high concentrations of zinc, itself essential to microorganisms for growth, can end up blocking ion channels that cross the membrane. When nutrients essential to the microorganism cannot enter, cell growth and reproduction is halted.
A more drastic method is to simply break the microorganism open. A wide range of antimicrobial technologies generate reactive oxygen species such as peroxides and singlet oxygen that attack and break down the cell membrane. Others, such as silane quaternary compounds, simply pierce or rupture the membrane through mechanical means.
Binding and inhibiting essential cellular processes
Antimicrobial technologies can also wreak havoc from inside the cell. Metal-based technologies, such as silver, copper, and zinc, release ions that bind to components of the cell's internal machinery, many of which are a part of pathways essential to the cell's survival. Metallic ions, being positively charged, also interact with negatively charged genetic material such as DNA and RNA. Access to DNA and RNA is critical – without it, new proteins cannot be created, and in the case of DNA, cell division is halted when DNA cannot be copied.
Preventing adhesion to surfaces
A tactic to combat bacteria and mold is to simply prevent adherence to surfaces. Bacteria and mold have the ability to form biofilm, a dense film-like structure containing and protecting millions of microorganisms. The first step to forming biofilm, is adherence to a surface. Antimicrobial companies have created surfaces that provide an unfavorable environment for adhesion, resulting in a microorganism that simply lives out the rest of its short life in peace without growing and forming problematic films.
Does the mechanism of action matter?
In short, yes!
There is a great concern amongst scientists that antimicrobials that kill microorganisms from within can contribute to the development of antibiotic resistant bacteria. Almost all organisms have a mechanism called an efflux pump that is responsible for removing toxic substances. Extensive exposure to low levels of toxins pressures microorganisms to develop and evolve more effective efflux pumps, which the microorganism can also use to pump out antibiotics.
As far, scientists have only managed to induce resistance to antimicrobial technologies in the laboratory, but it will become a possibility in the wild if antimicrobial technologies are used irresponsibly. Antibiotic resistance is deemed by the World Health Organization as one of the top 10 global public health threats facing humanity – without effective antibiotics, many routine conditions and medical procedures today will become a matter of life and death.
IDTechEx have analyzed over 100 companies in the antimicrobial technology market, many of which are developing technologies to circumvent the problem of antimicrobial resistance. For more information on the topic, please refer to www.IDTechEx.com/Antimicrobial, or for the full portfolio of Healthcare related research available from IDTechEx please visit www.IDTechEx.com/Research/Healthcare.
About IDTechEx
IDTechEx guides your strategic business decisions through its Research, Subscription and Consultancy products, helping you profit from emerging technologies. For more information, contact [email protected] or visit www.IDTechEx.com.
Images download:
https://www.dropbox.com/sh/xf9c47qzkbpcwow/AACpeOD5W0hJ9OFdh1vbgqRla?dl=0
Media Contact:
Natalie Moreton
Digital Marketing Manager
[email protected]
+44(0)1223 812300
Social Media Links:
Twitter: https://www.twitter.com/IDTechEx
LinkedIn: https://www.linkedin.com/company/idtechex/
Facebook: https://www.facebook.com/IDTechExResearch
Photo: https://mma.prnewswire.com/media/1483828/IDTechEx_Antimicrobial_products.jpg
Logo: https://mma.prnewswire.com/media/478371/IDTechEx_Logo.jpg
SOURCE IDTechEx
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
Newsrooms &
Influencers
Digital Media
Outlets
Journalists
Opted In
Share this article