WASHINGTON, Nov. 30, 2010 /PRNewswire-USNewswire/ -- Nuclear magnetic resonance (NMR) is one of the best tools for gaining insight into the structure and dynamics of molecules because nuclei in atoms within molecules will behave differently in a variety of chemical environments. Nuclei can be thought of as tiny compasses that align when placed in the field of a strong magnet. Similar to magnetic resonance imaging (MRI), conventional NMR uses short pulses of radio waves to drive nuclei away from equilibrium and a "signal" emerges as nuclei slowly realign with the field.
(Logo: http://photos.prnewswire.com/prnh/20100714/AIPLOGO)
Results reported in The Journal of Chemical Physics introduce an alternative path to this information, by using light to observe nuclei indirectly via the orbiting electrons.
"We are not looking at a way to replace the conventional technique but there are a number of applications in which optical detection could provide complementary information," says author Carlos Meriles of the City University of New York.
The new technique is based on Optical Faraday Rotation (OFR), a phenomenon in which the plane of linearly polarized light rotates upon crossing a material immersed in a magnetic field. When nuclei are sufficiently polarized, the extra magnetic field they produce is "felt" by the electrons in the sample thus leading to Faraday rotation of their own. Because the interaction between electrons and nuclei depends on the local molecular structure, OFR-detected NMR spectroscopy provides complementary information to conventional detection.
Another interesting facet of the technique is that, unlike conventional NMR, the signal response is proportional to the sample length, but not its volume. "Although we have not yet demonstrated it, our calculations show that we could magnify the signal by creating a very long optical path in a short, thin tube," Meriles says. This signal magnification would use mirrors at both ends of a channel in a microfluidics device to reflect laser light repeatedly through the sample, increasing the signal amplitude with each pass.
The article, "Time-resolved, optically-detected NMR of fluids at high magnetic field" by Daniela Pagliero, Wei Dong, Dimitris Sakellariou, and Carlos A. Meriles appears in The Journal of Chemical Physics. See: http://link.aip.org/link/jcpsa6/v133/i15/p154505/s1
Journalists may request a free PDF of this article by contacting [email protected]
ABOUT The Journal of Chemical Physics
The Journal of Chemical Physics publishes concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. Routine applications of chemical physics techniques may not be appropriate for JCP. Content is published online daily, collected into four monthly online and printed issues (48 issues per year); the journal is published by the American Institute of Physics. See: http://jcp.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.
Contact: Jason Socrates Bardi, 301-209-3091, [email protected]
SOURCE American Institute of Physics
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
Newsrooms &
Influencers
Digital Media
Outlets
Journalists
Opted In
Share this article