SHELTON, Conn., March 26, 2019 /PRNewswire/ -- NanoViricides, Inc. (NYSE MKT: NNVC) (the "Company") a company with novel platform technology to treat difficult and life-threatening viral diseases, announces that it has requested a pre-IND meeting with the US FDA, as it progresses its lead drug candidate towards human clinical trials.
The Company recently reported that its first broad-spectrum drug candidate in the HerpeCide™ program, namely, NV-HHV-101, has successfully completed the non-GLP portion of the Safety/Toxicology studies that are required for filing an IND in order to initiate human clinical trials. The Company is now in the process of manufacturing a large batch of the drug as needed for the GLP portion of the Safety/Toxicology studies. Our IND-enabling non-GLP as well as GLP Safety/Toxicology studies are being conducted by BASi, Evansville, Indiana, a well known CRO specializing in these studies.
NanoViricides has now submitted a request for a "Type B" Pre-IND Meeting with the US FDA for this drug candidate. The Company believes that the resulting pre-IND meeting will provide valuable information for designing the Company's clinical program for this drug candidate. The initial indication of this drug candidate will be for the treatment of shingles rash. The Company is also developing drugs against HSV-1 "cold sores" and HSV-2 "genital ulcers", both based on this same drug candidate, although final clinical candidates are in pre-clinical optimization stage for both of these indications as of now.
NV-HHV-101 is a broad-spectrum nanomedicine designed to attack herpesviruses that use the HVEM ("herpesvirus entry mediator") receptor on human cells. This drug candidate is composed of a flexible polymeric micelle "backbone" to which a number of small chemical ligands are chemically attached. The ligands in this case are designed to mimic the binding site of the herpesviruses on HVEM, based on molecular modeling. NV-HHV-101 is expected to bind to VZV via a number of binding sites (i.e. the ligands), thereby encapsulating the virus particle and destroying its ability to infect human cells. This "Bind, Encapsulate, Destroy" nanoviricide® strategy is distinctly different from the mechanism of action of existing antiviral drugs against VZV.
The Company is developing its clinical program for NV-HHV-101, formulated as a skin cream for topical application, with the help of regulatory affairs experts from the Biologics Consulting Group, Inc., Alexandria, VA.
Until our own antiviral cell culture studies, it was not known whether such a drug would be able to attack the Varicella Zoster Virus (VZV). VZV causes chickenpox in children and shingles in adults. Upon primary infection in childhood, VZV becomes dormant in the nerve ganglia as the patient recovers from chickenpox (or from the attenuated viral vaccine "ZostaVax®"), and then the virus reactivates in adulthood when immune surveillance weakens to present as shingles.
The Company has conducted a drug candidate optimization program using an ex vivo human skin organ culture ("SOC") model of VZV infection, together with cell culture based VZV infection studies, to arrive at NV-HHV-101. The SOC model of VZV infection has been developed by Professor Jennifer Moffat at the Upstate Medical Center, SUNY, Syracuse, NY. It is the only pre-clinical model suitable for evaluating a topical therapy against shingles because VZV infects only humans. There is no animal model available for the evaluation of topical drugs against VZV infection.
NV-HHV-101 is formulated as a dermal cream to be applied topically on the rash. It is expected to reduce viral load at the site, thereby arresting the progress of the shingles rash, and minimizing damage to nerve endings in the area. It is generally believed that the damage to nerve endings caused by VZV that is replicated locally after it is released from the nerves initially leads to the severe "pins-and-needles" debilitating pain of shingles. Thus NV-HHV-101 is expected to minimize the entire pathology of shingles, including the rash, skin damage, nerve damage, and associated pain. The Company intends to focus the initial clinical studies to evaluate the effect of application of NV-HHV-101 on the shingles rash.
Existing antivirals against VZV include oral derivatives of acyclovir. These drugs requires activation by a viral enzyme, thymidilate kinase (vTK), for further cellular conversion to the active triphosphate form that interferes with the viral DNA polymerase. However, the vTK encoded by VZV has an extremely poor activity (compared to vTK from HSV-1 or HSV-2), and thus these drugs have very poor activity against VZV, and large oral dosages over extended periods are needed to be given for relatively small clinical benefit. Additionally, a dermal topical cream formulation of cidofovir is employed in very severe cases of shingles. Cidofovir is highly toxic, particularly towards kidneys. A safer, effective, drug is thus an unmet medical need for VZV.
Zostavax and other attenuated VZV (Oka strain) vaccines for chickenpox are available, but not widely adopted. These vaccines may lead to a less severe form of shingles in adulthood or at a later age, compared to the "wild type" chickenpox virus. A new vaccine, Shingrix® has been introduced by GSK recently, based on subunits or protein fragments of the virus, which cannot lead to rebound shingles, but suffers from a very severe side effects profile. Shingrix is not yet widely available, potentially due to difficulties in manufacturing.
The market size for a highly effective drug against shingles is projected to be in several billions of dollars, if it leads to substantial reduction in the advanced manifestation of the disease, namely PHN, by independent consultants. These market size estimates account for the effect of ZostaVax and the newly introduced Shingrix vaccine on the patient population size. PHN or "post-herpetic neuralgia" is the continuation of the debilitating pain of shingles well after the patient has recovered from the shingles rash episode itself. PHN is believed to be due to extensive damage to nerve endings in the area of the shingles rash, and is expected to be correlated with the severity of the shingles presentation (or viral load). A less effective drug that minimizes the pathology of the shingles rash alone is also projected to have a market size into a billion dollar range.
The Company also continues to evaluate this broad-spectrum drug candidate as well as certain variations based on the same candidate, for the treatment of other herpesviruses, namely HSV-1 cold sores and HSV-2 genital herpes. The market size for our immediate target drugs in the HerpeCide™ program is variously estimated into billions to tens of billions of dollars. The Company believes that its dermal topical cream for the treatment of shingles rash will be its first drug heading into clinical trials. The Company believes that additional topical treatment candidates in the HerpeCide™ program, namely, HSV-1 "cold sores" treatment, and HSV-2 "genital ulcers" treatment are expected to follow the shingles candidate into IND-enabling development and then into human clinical trials.
NanoVircides' platform technology and programs are based on the TheraCour® nanomedicine technology of TheraCour Pharma, Inc. NanoViricides holds licenses for developing drugs against several different viruses from TheraCour, including HSV-1 and HSV-2. A license for drugs against VZV is in progress. The Company recently announced that it has entered into a non-binding letter of intent with TheraCour with respect to the terms of a license for use in all therapeutic indications caused by the shingles virus (VZV), including shingles, chickenpox, PHN, ARN (acute retinal necrosis), and other clinical manifestations where attacking the VZV virus would be of clinical benefit. TheraCour is owned substantially by the Company's President and Executive Chairman of the Board, Anil R. Diwan, PhD. A final license agreement is in progress.
About NanoViricides
NanoViricides, Inc. (www.nanoviricides.com) is a development stage company that is creating special purpose nanomaterials for antiviral therapy. The Company's novel nanoviricide® class of drug candidates are designed to specifically attack enveloped virus particles and to dismantle them. The Company is developing drugs against a number of viral diseases including H1N1 swine flu, H5N1 bird flu, seasonal Influenza, HIV, oral and genital Herpes, viral diseases of the eye including EKC and herpes keratitis, Hepatitis C, Rabies, Dengue fever, and Ebola virus, among others. This press release contains forward-looking statements that reflect the Company's current expectation regarding future events. Actual events could differ materially and substantially from those projected herein and depend on a number of factors. Certain statements in this release, and other written or oral statements made by NanoViricides, Inc. are "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. You should not place undue reliance on forward-looking statements since they involve known and unknown risks, uncertainties and other factors which are, in some cases, beyond the Company's control and which could, and likely will, materially affect actual results, levels of activity, performance or achievements. The Company assumes no obligation to publicly update or revise these forward-looking statements for any reason, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future. Important factors that could cause actual results to differ materially from the company's expectations include, but are not limited to, those factors that are disclosed under the heading "Risk Factors" and elsewhere in documents filed by the company from time to time with the United States Securities and Exchange Commission and other regulatory authorities. Although it is not possible to predict or identify all such factors, they may include the following: demonstration and proof of principle in preclinical trials that a nanoviricide is safe and effective; successful development of our product candidates; our ability to seek and obtain regulatory approvals, including with respect to the indications we are seeking; the successful commercialization of our product candidates; and market acceptance of our products.
FDA refers to US Food and Drug Administration. IND refers to investigational drug application. API refers to active pharmaceutical ingredient.
SOURCE NanoViricides, Inc.
Related Links
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
Newsrooms &
Influencers
Digital Media
Outlets
Journalists
Opted In
Share this article