DUBLIN, Jan. 29, 2021 /PRNewswire/ -- The "Global and China Commercial Vehicle Telematics Industry Report, 2020" report has been added to ResearchAndMarkets.com's offering.
Center console integrated display designs from dual-screen and triple-screen to quint-screen display, for example, have been adopted by quite a few OEMs in 2020, besides the usual console and cluster designs.
Outperforming the conventional one in intelligence and comfort, the intelligent cockpit is born with the availability of more and more electronics in the vehicle and caters to the user's needs better. It is evolving apace alongside rapid advances in new intelligence technologies and new materials.
It is analytically judged from major suppliers and their cockpits configured to new models as well as the cockpit configuration of concept cars launched in recent years that automotive intelligent cockpit design will be headed in the directions below:
1. Intelligent cockpit will bear richer versatilities.
The upgrade of automotive electronics brings functional build-up of new products. Also, new features like driver monitor system (DMS), driving recorder, rear row entertainment display and co-pilot entertainment display enrich the intelligent cockpit.
What's more, the use of intelligent surface and multiple sensors in the vehicle cockpit gives more scope to versatile cockpit design. For instance, a window is not only a shelter from wind and rain but also an information display. HUD, sunroof and seat material can be used for displaying vehicle and entertainment information.
2. Multi-channel, fused interaction will become a mainstay in human-vehicle interaction.
Apart from button, touch and voice, human-vehicle interaction modes like voice assistant, gesture recognition, fingerprint, sound localization, face recognition and holographic image have been found in vehicle models launched. For example, BMW Natural Interaction, a new interaction system planned to be available to new iNext in 2021, seamlessly integrates with voice and gesture control and gaze recognition, which allows the driver to choose what they want in the interaction system; all-new Mercedes-Benz S-Class released in September 2020, features an upgraded gesture recognition capability that enables gesture control over center console, and recognition of face direction and body language via the in-vehicle camera to open the function as needed.
3. 3D, multiple screen, large-size display and diversified layout will hold the trends for intelligent cockpit display.
In an age of scenario-based interaction, cockpit layout no longer follows the same pattern. Center console integrated display designs from dual-screen and triple-screen to quint-screen display, for example, have been adopted by quite a few OEMs in 2020, besides usual console and cluster designs. Moreover, new displays including control screen, co-pilot entertainment screen, rear row display and transparent A-pillar have also been deployed in cars in a new way.
4. "User experience"-centric cockpit scenario-based interaction modes will become pervasive.
For in-vehicle scenario-based interaction modes, new models on the market deliver simple scenario interactions with smart configurations from voice and ambient light to smart seat and in-car cameras. Take Mercedes-Benz S-Class introduced in September 2020 as an example. The model's active ambient lighting that enshrines 263 LEDs automatically projects a bright red animation as a warning throughout the cabin when necessary, and gives real-time lighting feedback when the driver controls the air-conditioning system and "Hey Mercedes" voice assistant.
Additionally, the ever upgraded intelligent connectivity system enables availability of such features as voice-activated shopping, WeChat vehicle version and Alipay applets onto vehicles. Scenario-based interactions between the inside and outside of vehicles make vehicles a third space.
5. The maturing new materials for intelligent surfaces will likely enable every surface with interaction ability.
In the Vision BMW i International EASE cockpit, the seats covered by 3D knitted fabric interactive materials allows for touch control over functions. Yanfeng Global Automotive Interior Systems Co., Ltd.'s XiM21 smart cockpit combines digital technology, lighting and physical materials to realize touch switch and create ambience. There are several optional surface materials such as crystal, wood grain and fabric. The touch switch applies pressure sensing technology to ensure safety.
6. Touch feedback will be a key technology for higher level of safety.
Automotive HMI design follows the principle of lowering the level of driver's distraction and making input and output of vehicle data more effective. As virtual touch buttons/switches find broader application in vehicles, touch feedback technology becomes a crucial way to improve safety. As start-ups such as Tanvas, Immersion, Boreas Technologies and Aito are deploying the technology, major tier-1 suppliers like Continental, Valeo and Bosch also race to make presence.
Bosch's proprietary "NeoSense" touchscreen gives haptic feedback to users. With buttons on the screen touch as real ones, frequent users even don't need to see the display to complete operation.
7. Software system will play as a key means to differentiate cockpits.
Android system has enriched IVI system scenarios and provides more personalized human-machine interfaces in efforts to make a rapider expansion in the automotive market, amid simultaneous iterations of software and hardware. To this end, vehicle software providers keep trying to sharpen their software tools and provide more efficient services for OEMs and suppliers. Based on useful functions, human-vehicle interaction interface design does not go into a rut. Some innovative UI designs like 3D vision, visualized, young, flat and card style designs have been found in new vehicles.
Key Topics Covered:
1 Design Ideas and Trends of Automotive Intelligent Cockpit
1.1 Status Quo of Intelligent Cockpit Design and Layout
1.1.1 Overview of Automotive Intelligent Cockpit
1.1.2 Development Trends of Automotive Cockpit
1.1.3 Statistics of Cockpits Configured into Main New Vehicle Models, 2020
1.1.4 Cockpit Configurations of Vehicle Models
1.2 Design Trends of Automotive Intelligent Cockpit
2 Design Trends of Automotive Intelligent Cockpit Display
2.1 Cockpit Display Design
2.2 Design Trends of Cockpit Display
3 Design Trends of Human-Machine Interaction (HMI) for Automotive Intelligent Cockpit
3.1 Status Quo of Automotive Cockpit HMI Design
3.1.1 Overview of Automotive HMI
3.1.2 Development Course of Automotive HMI Modes
3.1.3 Main HMI Modes of Foreign and Chinese OEMs
3.1.4 Automotive HMI Design Approach
3.1.5 Automotive HMI Design Flow
3.1.6 Design and Development Workflow of Automotive HMI
3.1.7 Tools to Use in Automotive HMI Design
3.1.8 HMI Design Integration Software Tool of Main Companies
3.1.9 HMI Design Providers of Main OEMs
3.2 Design Trends of Cockpit HMI
3.3 Main Cockpit HMI Design Providers
3.3.1 ThunderSoft
3.3.2 CANDERA
3.3.2.1 CGI
3.3.2.2 CGI Studio
3.3.2.3 CGI Largely in Support of Software, Hardware and Ecosystem
3.3.2.4 Cases
3.3.3 Altia
3.3.4 Qt Design
3.3.5 EB HMI Development Platform
3.3.5.1 HMI Development Platform
3.3.5.2 Cases
3.3.6 Neusoft HMI Design
3.3.7 Valeo HMI Business
3.3.8 Visteon HMI Business
3.3.9 Bosch HMI
3.3.10 Faurecia HMI
4 Application and Design Trends of Automotive Smart Surface
4.1 Overview of Smart Surface Technology
4.1.1 Overview of Smart Surface
4.1.2 Features of Smart Surface Products
4.1.3 Main Components of Smart Surface
4.1.4 Smart Surface Technological Process
4.1.5 Smart Surface Industry Chain
4.1.6 Products of Main Smart Surface Suppliers
4.2 Design Trends of Smart Surface
4.3 Application Cases of Smart Surface
4.4 Main Providers of Smart Surface Technology Solutions
4.4.1 Covestro's Smart Surface Solutions
4.4.1.1 Cases
4.4.2 Canatu
4.4.2.1 Smart Surface Solutions
4.4.2.2 3D Shaped Touch Coupled with Translucent Fabrics
4.4.2.3 3D Shaped Touch Transparent Control Switch
4.4.2.4 Cases
4.4.3 TactoTek's Smart Surface Products
4.4.3.1 Smart Surface Technology
4.4.3.2 Main Automotive Partners and Customers
4.4.4 Yanfeng's Smart Surface Technology
4.4.5 Continental's Smart Surface Materials
4.4.6 Faurecia's Smart Surface Technology
5 Application and Design Trends of Automotive Intelligent Cockpit Ambient Lighting
5.1 Interior Ambient Lighting Development
5.1.1 Overview of Automotive Ambient Lighting
5.1.2 Classification of Automotive Ambient Lighting
5.1.3 Composition of Automotive Ambient Lighting
5.1.4 Applications of Automotive Ambient Lighting
5.1.5 Interior Ambient Lighting Control Technology
5.1.6 Main Vehicle Body Network Architectures of Interior Ambient Lighting
5.1.7 Evolution of Interior Ambient Lighting
5.1.8 Interior Ambient Lighting Design Flow
5.1.9 Interior Ambient Lighting Industry Chain
5.2 Development Trends of Interior Ambient Lighting
5.3 Interaction Cases of Interior Ambient Lighting
6 Application Trends of Automotive Smart Haptic Feedback Technology
6.1.1 Overview of Haptic Feedback Technology
6.1.2 Demand for Haptic Feedback Technology
6.1.3 Haptic Feedback Modes
6.1.4 Haptic Feedback Technology Industry Chain
6.1.5 Haptic Feedback Products of Main Providers
6.1.6 Haptic Feedback Products of Main Tier1 Suppliers
6.1.7 Main OEMs' Application of Haptic Feedback Technology
6.1.8 Cases
6.2 Main Automotive Haptic Feedback Providers
6.2.1 Tanvas' Versatile Surface Haptic Technology
6.2.2 Borea
6.2.2.1 Patented Haptic Feedback Technology
6.2.2.2 Automotive Haptic Feedback Products
6.2.3 TDK PowerHap
6.2.3.1 Brand-new Products
6.2.3.2 Product Planning
6.2.4 Continental's Haptic Feedback Technology
6.2.4.1 Haptic Feedback Technology
6.2.4.2 Haptic Interaction Display
6.2.4.3 Morphing Control
6.2.5 Bosch's Haptic Feedback Technology
6.2.6 Joyson Electronics' Haptic Feedback Technology
7 Other Emerging Cockpit Interaction Technologies
7.1 Diversified Steering Wheel Designs
7.2 Car Audio
7.3 Intelligent Health Cockpit Layout
For more information about this report visit https://www.researchandmarkets.com/r/vhztgz
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Media Contact:
Research and Markets
Laura Wood, Senior Manager
[email protected]
For E.S.T Office Hours Call +1-917-300-0470
For U.S./CAN Toll Free Call +1-800-526-8630
For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716
SOURCE Research and Markets
Related Links
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
Newsrooms &
Influencers
Digital Media
Outlets
Journalists
Opted In
Share this article