SEATTLE, Sept. 12, 2017 /PRNewswire/ -- The founders of macro-eyes, a machine learning company that personalizes patient care, today announced the introduction of Sibyl, a predictive scheduling solution that cuts the financial and operational impact from patient No-Shows without relying on patient behavior change.
We've all called to book a medical appointment to be told that the first available slot is in 5 to 6 weeks. That day, 10 appointments may go empty, even 20; often more. No one shows up to ~15% of all scheduled appointments. At many sites, No-Shows can constitute nearly 40% of appointments. A schedule filled with No-Show appointments prevents the greatest number of patients from accessing the care they need when they need it most.
"No-Shows and lack of optimization in scheduling costs healthcare providers billions, hits morale, strains operations and has implications on care that can cost lives. We developed Sibyl to solve the problem with cutting-edge machine learning and deliver long-needed, massive improvement in cutting the damage from No-Shows. Sibyl is AI that learns when to schedule individual patients to increase utilization overall," said Benjamin Fels, CEO of macro-eyes. Healthcare is increasingly data-driven, scheduling is not. It's mission-critical infrastructure, yet the decision-making that determines scheduling doesn't benefit from data-driven insight or predictive analytics.
Sibyl is a predictive scheduling solution that machine learns the appointment times that are best-fit for both the patient and provider, increasing utilization overall. The software functions as an add-on to existing scheduling systems, showing schedulers appointment recommendations for each patient.
"It's extremely difficult to change patient behavior," explains Fels. "Likely the reason No-Shows continue to cost providers >$100B each year. Sibyl offers a proven approach based on solid science. We use patterns in behavior to learn when patients are most likely to show and the mathematics of optimization to build schedules that enable the greatest access to care."
Sibyl uses macro-eyes core AI, refined over years at leading academic medical centers in NYC and California, to analyze appointment histories and thousands of data points across providers, patients, location, time and type of care as well as weather patterns, air quality, traffic and transport data and state and federal data on the region where the care will occur. "The schedule is like a puzzle, and Sibyl is an expert at fitting together the schedule to minimize gaps," Fels explains.
Sibyl works like x-ray glasses for the calendar, seeing through the chaotic schedule to understand where there are gaps that would otherwise be impossible to see. By integrating predictive analytics with schedule optimization, Sibyl provides a peerless tool for healthcare organizations, improving the bottom line as well as the patient experience.
Contact: Beatriz Arana
Email: [email protected]
SOURCE Energia Communications LLC
Related Links
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
Newsrooms &
Influencers
Digital Media
Outlets
Journalists
Opted In
Share this article